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Abstract. A pedagogical overview of the formulation of the Fat-Link-Irrelevant-Clover (FLIC) fermion
action and its associated phenomenology is described. The scaling analysis indicates FLIC fermions provide
a new form of nonperturbative O(a) improvement where near-continuum results are obtained at finite
lattice spacing. Spin-(1/2) and spin-(3/2), even- and odd-parity baryon resonances are investigated in
quenched QCD, where the nature of the Roper resonance and Λ∗(1405) are of particular interest. FLIC
fermions allow efficient access to the light-quark-mass regime, where evidence of chiral nonanalytic behavior
in the ∆ mass is observed.

PACS. 12.38.Gc Lattice QCD calculations – 12.38.Aw General properties of QCD (dynamics, confinement,
etc.)

1 FLIC Fermions

The CSSM lattice Collaboration has been examining the
merits of a new lattice fermion action [1] in which the
(irrelevant) operators introduced to remove fermion dou-
blers and lattice spacing artifacts are constructed with
smoothed links. These links are created via APE smear-
ing [2]; a process that averages a link with its nearest
transverse neighbors in a gauge-invariant manner. Itera-
tion of the averaging process generates a “fat” link. The
use of links in which short-distance fluctuations have been
removed simplifies the determination of the coefficients of
the improvement terms [3]. Perturbative renormalizations
are small for smeared links and tree-level estimates, or the
mean-field improved estimates used here, are sufficient to
remove O(a) errors in the lattice spacing a, to all orders
in the strong-coupling g. The key is that both the energy
dimension-five Wilson term and the Clover term [4] are
constructed with smooth links, while the relevant oper-
ators, surviving in the continuum limit, are constructed
with the original untouched links generated via standard
Monte Carlo techniques. We call this action the Fat-Link-
Irrelevant-Clover (FLIC) fermion action.

The established approach to nonperturbative (NP) im-
provement [5] tunes the coefficient of the clover operator
to all powers in g2. Unfortunately, this formulation of the
clover action is susceptible to the problem of exceptional
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configurations as the quark mass becomes small. Chiral
symmetry breaking in the clover fermion action introduces
an additive mass renormalization into the Dirac operator
that can give rise to singularities in quark propagators at
small quark masses. In practice, this prevents the simula-
tion of small quark masses and the use of coarse lattices
(β < 5.7 ∼ a > 0.18 fm) [3,6].

The clover term of the fermion action requires a lattice
determination of the QCD field strength tensor Fµν . The
so-called clover version of Fµν(x) involves the product of
links around the four plaquettes centered at x in the µ-ν
plane. This simple formulation is commonly used in clover
actions, but it is now known to have large O(a2) errors.
These errors lead to 10% errors in the topological charge
even on very smooth configurations [7].

A key feature of FLIC fermions is that the construc-
tion of irrelevant operators using smoothed links facilitates
the use of highly improved definitions of the QCD field
strength tensor Fµν . In particular, we employ anO(a4) im-
proved definition of Fµν [8] in which the standard clover-
sum of four 1 × 1 Wilson loops is combined with 1 × 2,
1× 3, 2× 2 and 3× 3 Wilson-loop clovers.

The scaling analysis of FLIC fermions is performed
at three different lattice spacings and two different vol-
umes. The tree-level O(a2)–Symanzik-improved [9] gauge
action is used on 123×24 and 163×32 lattices with lattice
spacings of 0.093, 0.122 and 0.165 fm determined from a
string tension analysis incorporating the lattice Coulomb
term [10]. Where necessary, we take

√
σ = 440 MeV. A
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Fig. 1. Nucleon and vector meson masses for the Wilson,
mean-field (MF) improved, NP-improved clover and FLIC ac-
tions obtained by interpolating simulation results to mπ/mρ =
0.7. For the FLIC action (“FLIC4”), fat links are constructed
with n = 4 APE-smearing sweeps with smearing fraction
α = 0.7. Results from the CSSM lattice Collaboration are in-
dicated by the solid symbols; those from earlier simulations by
open or hatched symbols. The solid-lines illustrate fits, con-
strained to have a common continuum limit, to FLIC, NP-
improved clover and Wilson fermion action results obtained
on physically large lattice volumes.

total of 200 configurations are used in the scaling analysis
at each lattice spacing and volume. In addition, for the
light quark simulations, 94 configurations are used on a
203 × 40 lattice with a = 0.134 fm. The error analysis is
performed by a third-order, single-elimination jackknife,
with the χ2 per degree of freedom obtained via covari-
ance matrix fits. A fixed boundary condition and smeared
sources [11] are used for the fermions.

Figure 1 displays our most comprehensive scaling anal-
ysis to date. The present results for the Wilson action
agree with those of ref. [12]. The FLIC action performs
systematically better than the mean-field–improved clover
action and competes well with those obtained with the
NP-improved clover fermion action [12].

Our two different volumes used at a2σ ∼ 0.075 indi-
cate a finite-volume effect, which increases the mass for
the smaller volumes at a2σ ∼ 0.075 and ∼ 0.045. Exam-
ination of points from the small and large volumes sepa-
rately indicates continued scaling toward the continuum
limit. While the finite-volume effect will produce a differ-
ent continuum limit value, the slope of the points from the
smaller and larger volumes agree.

Focusing on simulation results from physical volumes
with extents ∼ 2 fm and larger, we perform a simulta-
neous fit of the FLIC, NP-improved clover and Wilson
fermion action results. The fits are constrained to have a
common continuum limit and assume errors are O(a2) for
FLIC and NP-improved clover actions and O(a) for the
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Fig. 2. Masses of the nucleon (N) and the lowest JP = 1/2−

excitation (“N∗”), obtained from the standard nucleon in-
terpolating field. The FLIC and Wilson results are from the
present analysis.

Wilson action. An acceptable χ2 per degree of freedom
is obtained for both the nucleon and ρ-meson fits. These
results indicate that FLIC fermions provide a new form
of nonperturbative O(a) improvement. The FLIC fermion
results display nearly perfect scaling indicating O(a2) er-
rors are small for this action.

2 Baryon resonances

Lattice studies of baryon excitations [13–17] provide valu-
able insight into the forces of confinement and the nature
of QCD in the nonperturbative regime. They complement
the high-precision measurements of the N∗ spectrum un-
der way at Jefferson Lab. The simulations presented here
are performed on 392 O(a2)–Symanzik-improved [9] con-
figurations of size 163 × 32 at β = 4.60 providing a lattice
spacing of a = 0.122(2) fm. FLIC fermions are imple-
mented with 4 sweeps of APE smearing at α = 0.7.

2.1 Spin-(1/2) baryon resonances

There are two nucleon interpolating fields commonly con-
sidered in exciting the nucleon from the vacuum. The
standard interpolating field couples a u-d quark pair to
a scalar diquark and is O(1) in a nonrelativistic reduc-
tion. The alternate interpolator is O(p2/E2) in a nonrela-
tivistic reduction placing two quarks in relative P waves.
Odd-parity states may be projected from correlation func-
tions of these interpolators. The standard interpolator is
expected to have stronger overlap with the lowest-lying
odd-parity state due to the scalar-diquark construction of
the interpolator.

In fig. 2 we show the N and N∗(1/2−) masses from
FLIC fermions as a function of m2

π. For comparison, we
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Fig. 3. Masses of the nucleon, and the lowest JP = 1/2+ exci-
tation (“N ′”) obtained from the alternate interpolating field.
The FLIC and Wilson results are from this analysis.

also show results from simulations with Wilson [17] and
domain wall fermions (DWF) [16], and the NP-improved
clover action [15] with different source smearing and vol-
umes. There is excellent agreement between the different
improved actions for the nucleon mass. The Wilson results
lie systematically low in comparison to these due to large
O(a) errors in this action [1].

A similar pattern is seen for the lowest-lying N∗(1/2−)
masses. A mass splitting of approximately 400 MeV is
clearly visible between the N and N∗ for all actions, in-
cluding the Wilson. The trend of the N∗(1/2−) data with
decreasing mπ is also consistent with the mass of the low-
est physical negative-parity N∗ state.

The mass of the JP = 1/2+ state obtained from the al-
ternate nucleon interpolating field [13], which vanishes in
a nonrelativistic reduction, is shown in fig. 3. In addition
to the FLIC and Wilson results from the present analysis,
also shown are the DWF results [16], and results from an
earlier analysis with Wilson fermions analyzed via the op-
erator product expansion [13]. The most striking feature
of the data is the relatively large excitation energy of the
N ′, some 1 GeV above the nucleon. It has been speculated
that the alternate interpolator may have overlap with the
lowest 1/2+ excited state [16]. However, there is little ev-
idence that this state is the N∗(1440). It is likely that the
alternate nucleon interpolator simply does not have good
overlap with either the nucleon or the Roper, but rather
a (combination of) excited 1/2+ state(s).

The spectrum of positive- and negative-parity Λ states
is shown in fig. 4. Here we consider an interpolating field
which contains terms common to the SU(3)-flavor singlet
and octet interpolating fields. It is the SU(2)-isospin ana-
logue of the Σ0 interpolating field and does not bias the
flavor symmetry of the Λ-resonances. The positive (nega-
tive) parity states labeled Λ1 (Λ∗

1) and Λ2 (Λ∗
2) are con-
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Fig. 4. Masses of the Λ(1/2±) states, obtained from the stan-
dard (Λ1) and alternate (Λ2) interpolating fields. The symbols
are described in the text.

structed from the traditional and alternate Λ interpolators
analogous to those of the nucleon. The pattern of mass
splittings is similar to that observed for the N∗’s in figs. 2
and 3. The importance of the correlation matrix analysis
projecting the eigenstates of the Hamiltonian (filled sym-
bols) is evident from a comparison with the naive fits to
single correlation functions (open symbols). There is little
evidence that the Λ2 has any significant overlap with the
first positive-parity excited state, Λ∗(1600) (cf. the Roper
resonance, N∗(1440), in fig. 3).

While it seems plausible that nonanalyticities in a chi-
ral extrapolation [18] of N1 and N∗

1 results could eventu-
ally lead to agreement with experiment, the situation for
the Λ∗(1405) is not as compelling. Whereas a 150 MeV
pion-induced self-energy is required for the N1, N

∗
1 and

Λ1 states, 400 MeV is required to approach the empiri-
cal mass of the Λ∗(1405). This large discrepancy suggests
that relevant physics may be absent from simulations in
the quenched approximation or perhaps more exotic in-
terpolating fields are required to obtain significant overlap
with the Λ∗(1405). Investigations at lighter quark masses
involving quenched chiral perturbation theory will assist
in resolving these issues.

2.2 Spin-(3/2) baryon resonances

We consider the following isospin-(1/2), spin-(3/2) inter-
polator [19]: χN+

µ (x) = εabc(uTa(x) Cγ5γµ d
b(x))γ5uc(x),

which transforms as a pseudo-vector under parity, in ac-
cord with a positive-parity Rarita-Schwinger spinor. For
the ∆++-resonance we use the standard interpolator as
in ref. [20]. Since the spin-(3/2) Rarita-Schwinger spinor-
vector is a tensor product of a spin-1 vector and a spinor,
the spin-(3/2) interpolating field contains spin-(1/2) con-
tributions. To project a spin-(3/2) state one needs to use a
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Fig. 5. Masses of the spin-parity–projected ∆(3/2±) and
∆(1/2±) states. The empirical masses are indicated along the
ordinate.

spin-(3/2) projection operator [21]. Following spin projec-
tion, the correlation function for a given spin still contains
positive- and negative-parity states. In an analogous pro-
cedure to that used for spin-(1/2) resonances with a fixed
boundary condition in the time direction, positive- and
negative-parity states are obtained by taking the trace of
the correlation function with the parity-projection opera-
tors Γ± = (1± γ4) /2.

In fig. 5 the spin-parity-projected ∆(3/2+) (triangles)
and ∆(3/2−) (diamonds) masses are shown. We find a
clear signal for the P -wave ∆(3/2−) parity partner of
the ∆ ground state. The mass of the ∆(3/2−) lies some
500 MeV above that of its parity partner. A discernible
signal is detected for the ∆(1/2±) states. The level order-
ing of the ∆ states is consistent with that observed in the
empirical mass spectrum.

In the isospin-(1/2) sector, large statistical fluctuations
make it difficult to obtain a clear signal, even with 392
configurations. Parity projecting to extract the N(3/2+)
state, we find that the correlation function changes sign
and has a large negative contribution for time slices in the
range t = 7–11 following the source at t = 3. This behavior
is an artifact associated with the quenched decay of the
excited state into N+η′ and is further explored in ref. [19].

The N(1/2+) channel also displays the interplay of
a quenched decay channel and the ground state contri-
bution. A strong P -wave coupling of the N∗(1/2+) to
Nη′ forces the correlation function to be negative at small
times, which then turns positive at larger times when the
ground-state nucleon begins to dominate the correlation
function. This suggests that the first-excited state of the
nucleon has a strong coupling to the quenched η′ which
remains degenerate with the pion in the quenched ap-
proximation. These results imply a gluon-rich structure
for the Roper resonance and further indicate that it may
be impossible to directly observe the Roper resonance at
light quark masses in the quenched approximation. While
there are claims to have observed the Roper in quenched

Fig. 6. Masses of the spin-projected N(3/2−) and N(1/2+)
states, compared with the nucleon and N(1/2−) masses from
sect. 2.1.

QCD [22], these results follow from a Bayesian analysis,
and the credibility of the Bayesian-prior information used
in the analysis requires further examination [23,24].

The extracted masses of the N(3/2−) and N(1/2+)
states are displayed in fig. 6. Earlier results from sect. 2.1
using the standard spin-(1/2) interpolating field are also
shown in fig. 6 for reference. There is excellent agreement
between the spin-projected 1/2+ state obtained from the
spin-(3/2) interpolating field and the earlier 1/2+ results.

3 Chiral nonanalytic behavior

The FLIC fermion action has extremely impressive con-
vergence rates for matrix inversion [1,25], and this pro-
vides great promise for performing cost-effective simula-
tions at quark masses closer to the physical values. Prob-
lems with exceptional configurations have prevented such
simulations with Wilson-type fermion actions in the past.

In the absence of exceptional configurations, the stan-
dard deviation of an observable will be independent of the
number of configurations considered in the average. Ex-
ceptional configurations reveal themselves by introducing
a significant jump in the standard deviation as the con-
figuration is introduced into the average. In severe cases,
exceptional configurations can lead to divergences in cor-
relation functions or prevent the matrix inversion process
from converging.

The ease with which one can invert the fermion ma-
trix using FLIC fermions leads us to attempt simulations
down to small quark masses corresponding to mπ/mρ =
0.35. The simulations are on a 203×40 lattice with a phys-
ical length of 2.7 fm. We have used an initial set of 100
configurations, using n = 6 sweeps of APE-smearing and
a five-loop improved lattice field-strength tensor. Prelimi-
nary results indicate exceptional configurations at the few
percent level [19]. For the current results, these configura-
tions have been identified and removed from the ensemble.
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Fig. 7. Nucleon and ∆ masses for the FLIC-fermion action on
a 203 × 40 lattice with a = 0.134 fm. The solid curves illus-
trate fits of finite-range regulated quenched chiral perturbation
theory to the lattice QCD results. The dot-dashed and dashed
curves estimate the correction that will arise in unquenching
the lattice QCD simulations for the N and ∆, respectively.
Stars at the physical pion mass denote experimental values.

Fig. 8. Octet baryon masses for the FLIC-fermion action.
Points are offset for clarity. Symbols are as described for fig. 7.

Figure 7 shows the N and ∆ masses as a function of
m2

π for eight quark masses. An upward curvature in the ∆
mass for decreasing quark mass is observed in the FLIC
fermion results. This behavior, increasing the quenched
N −∆ mass spitting, was predicted by Young et al. [26]
using quenched chiral perturbation theory (QχPT) for-
mulated with a finite-range regulator. This QχPT fit to
the FLIC-fermion results is illustrated by the solid curves.
The dashed curves estimate the correction that will arise
in unquenching the lattice QCD simulations. A similar
preliminary analysis incorporating the light-meson cloud
of the baryon octet is illustrated in fig. 8. Inclusion of the
kaon-cloud is in progress.

4 Conclusions

In constructing the irrelevant operators of clover fermion
actions with APE-smeared links, FLIC fermions provide
a new form of nonperturbative O(a) improvement. The
technique allows the use of highly improved operators,
provides optimal scaling and reduces the exceptional con-
figuration problem. Quenched simulations at quark masses
down to mπ/mρ = 0.35 have been successfully performed
on a 203×40 lattice with a lattice spacing of 0.134 fm. Sim-
ulations at such light quark masses have already revealed
the non-analytic behavior of quenched chiral perturbation
theory in the ∆-baryon mass. We expect to see more ev-
idence of chiral nonanalytic behavior in forthcoming sim-
ulations of the electromagnetic form factors of hadrons.
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